)已知中心在原点,焦点在轴上的椭圆的离心率为,且经过点.(Ⅰ)求椭圆的方程;(Ⅱ)是否存过点(2,1)的直线与椭圆相交于不同的两点,满足?若存在,求出直线的方程;若不存在,请说明理由.
甲、乙、丙三人中要选一人去参加唱歌比赛,于是他们制定了一个规则,规则为:(如图)以为起点,再从,这个点中任取两点分别为终点得到两个向量,记这两个向量的数量积为,若就让甲去;若就让乙去;若就是丙去.(Ⅰ)写出数量积的所有可能取值;(Ⅱ)求甲、乙、丙三人去参加比赛的概率,并由求出的概率来说明这个规则公平吗?
已知向量,向量,.(Ⅰ)求函数的最小正周期和对称轴方程;(Ⅱ)若是第一象限角且,求的值.
从一批草莓中,随机抽取个,其重量(单位:克)的频数分布表如下:
(Ⅰ)根据频数分布表计算草莓的重量在的频率;(Ⅱ)用分层抽样的方法从重量在和的草莓中共抽取个,其中重量在的有几个?(Ⅲ)在(Ⅱ)中抽出的个草莓中,任取个,求重量在和中各有个的概率.
已知函数f(x)=x2+2alnx.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若函数在上是减函数,求实数a的取值范围.
某校为了探索一种新的教学模式,进行了一项课题实验,甲班为实验班,乙班为对比班,甲乙两班的人数均为50人,一年后对两班进行测试,测试成绩的分组区间为[80,90)、[90,100)、[100,110)、[110,120)、[120,130),由此得到两个班测试成绩的频率分布直方图:(Ⅰ)完成下面2×2列联表,你能有97.5%的把握认为“这两个班在这次测试中成绩的差异与实施课题实验有关”吗?并说明理由;
附:K2=,其中n=a+b+c+d