第(1)小题满分6分,第(2)小题满分8分.由于浓酸泄漏对河流形成了污染,现决定向河中投入固体碱。1个单位的固体碱在水中逐步溶化,水中的碱浓度与时间的关系,可近似地表示为。只有当河流中碱的浓度不低于1时,才能对污染产生有效的抑制作用。(1)如果只投放1个单位的固体碱,则能够维持有效抑制作用的时间有多长?(2)当河中的碱浓度开始下降时,即刻第二次投放1个单位的固体碱,此后,每一时刻河中的碱浓度认为是各次投放的碱在该时刻相应的碱浓度的和,求河中碱浓度可能取得的最大值.
数列{an}的前n项和记为 Sn,a1=2,an+1=Sn+n,等差数列{bn}的各项为正,其前n项和为Tn,且 T3=9,又 a1+b1,a2+b2,a3+b3成等比数列. (Ⅰ)求{an},{bn}的通项公式; (Ⅱ)求证:当n≥2时,++…+<.
一个袋子装有大小形状完全相同的9个球,其中5个红球编号分别为1,2,3,4,5,4个白球编号分别为1,2,3,4,从袋中任意取出3个球. (Ⅰ)求取出的3个球编号都不相同的概率; (Ⅱ)记X为取出的3个球中编号的最小值,求X的分布列与数学期望.
如图,在四棱锥P﹣ABCD中,PA⊥底面ABCD,∠DAB为直角,AB∥CD,AD=CD=2AB,E、F分别为PC、CD的中点. (Ⅰ)试证:AB⊥平面BEF; (Ⅱ)设PA=k•AB,且二面角E﹣BD﹣C的平面角大于45°,求k的取值范围.
(本小题满分13分) 已知,点A(s, f(s)), B(t, f(t)) (Ⅰ)若,求函数的单调递增区间; (Ⅱ)若函数的导函数满足:当|x|≤1时,有||≤恒成立,求函数的解析表达式; (Ⅲ)若0<a<b, 函数在和处取得极值,且,证明:与不可能垂直.
(本小题满分13分) 设关于的一元二次方程()有两根和,且满足. (Ⅰ)试用表示; (Ⅱ)求证:数列是等比数列; (Ⅲ)当时,求数列的通项公式,并求数列的前项和.