在平面直角坐标系中,已知圆经过点和点,且圆心在直线上,过点且斜率为的直线与圆相交于不同的两点.(1)求圆的方程, 同时求出的取值范围;(2)是否存在常数,使得向量与共线?如果存在,求值;如果不存在,请说明理由.
(本小题满分12分)某校团委会组织该校高中一年级某班以小组为单位利用周末时间进行了一次社会实践活动,且每个小组有名同学,在实践活动结束后,学校团委会对该班的所有同学都进行了测评,该班的两个小组所有同学所得分数(百分制)的茎叶图如图所示,其中组一同学的分数已被污损,但知道组学生的平均分比组学生的平均分高分. (Ⅰ)若在组学生中随机挑选人,求其得分超过分的概率; (Ⅱ)现从组这名学生中随机抽取名同学,设其分数分别为,求的概率.
(本小题满分12分)已知等差数列的首项,公差,前项和为,, (Ⅰ)求数列的通项公式; (Ⅱ)设数列前项和为,求
(本小题满分10分) 选修4—5:不等式选讲已知关于的不等式,其解集为. (Ⅰ)求的值; (Ⅱ)若,均为正实数,且满足,求的最小值.
(本小题满分10分) 选修4—4:坐标系与参数方程 已知极坐标系的极点在直角坐标系的原点处,极轴与轴的正半轴重合,直线的极坐标方程为:,曲线的参数方程为: (Ⅰ)写出直线的直角坐标方程; (Ⅱ)求曲线上的点到直线的距离的最大值.
(本小题满分12分)已知椭圆的两焦点与短轴的一个端点的连线构成等腰直角三角形,直线与以椭圆的右焦点为圆心,以椭圆的长半轴长为半径的圆相切. (Ⅰ)求椭圆的方程; (Ⅱ)设为椭圆上一点,若过点的直线与椭圆相交于不同的两点和,满足(为坐标原点),求实数的取值范围.