如图,在△ABC中,AB=AC,以AB边的中点O为圆心,线段OA的长为半径作圆,分别交BC、AC边于点D、E,DF⊥AC于点F,延长FD交AB延长线于点G .(1)求证:FD是⊙O的切线.(2)若BC=AD=4,求的值.
如图,方格纸中的每个小方格都是边长为1个单位的正方形,Rt△ABC的顶点均在格点上,在建立平面直角坐标系后,点A的坐标为(-6,1),点B的坐标为(-3,1),点C的坐标为(-3,3)。(1)将Rt△ABC沿x轴正方向平移5个单位得到Rt△A1B1C1,试在图上画出的图形Rt△A1B1C1的图形,并写出点A1的坐标;(2)将原来的Rt△ABC绕点B顺时针旋转90°得到Rt△A2B2C2,试在图上画出Rt△A2B2C2的图形
解方程组:
(本小题满分14分)已知二次函数(1)当时,函数值随的增大而减小,求的取值范围。(2)以抛物线的顶点为一个顶点作该抛物线的内接正三角形(,两点在抛物线上),请问:△的面积是与无关的定值吗?若是,请求出这个定值;若不是,请说明理由。(3)若抛物线与轴交点的横坐标均为整数,求整数的值。
(本小题满分12分)如图,已知一次函数y=kx+b的图象交反比例函数的图象于点A、B,交x轴于点C.(1)求m的取值范围;(2)若点A的坐标是(2,-4),且=,求m的值和一次函数的解析式.
(本小题满分12分)如图,直线交轴于A点,交轴于B点,过A、B两点的抛物线交轴于另一点C(3,0). ⑴ 求抛物线的解析式;⑵ 在抛物线的对称轴上是否存在点Q,使△ABQ是等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.