已知为坐标原点,,(,是常数),若.(1)求关于的函数关系式; (2)若的最大值为,求的值; (3)利用(2)的结论,用“五点法”作出函数在长度为一个周期的闭区间上的简图,并指出函数的单调区间
已知某几何体的直观图和三视图如下图所示,其正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形. (1)证明:BN⊥平面C1B1N; (2)求点
成都市海关对同时从A,B,C三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如表所示.工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.
(1)求这6件样品中来自A,B,C各地区商品的数量; (2)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.
本小题满分12分)已知函数,三个内角的对边分别为. (Ⅰ)求的单调递增区间及对称轴的方程; (Ⅱ)若,,求角的大小.
设函数. (1)若函数在处有极值,求函数的最大值; (2)是否存在实数,使得关于的不等式在上恒成立?若存在,求出的取值范围;若不存在,说明理由; (3)记,证明:不等式.
(本小题满分13分)已知椭圆C:的离心率为,以原点O为圆心,椭圆的短半轴长为半径的圆与直线相切 (Ⅰ)求椭圆C的标准方程 (Ⅱ)若直线L:与椭圆C相交于A、B两点,且,求证:的面积为定值