已知顶点是坐标原点,对称轴是轴的抛物线经过点.(Ⅰ)求抛物线的标准方程;(Ⅱ)直线过点,且与抛物线交于不同两点A,B,若,求直线的方程.
(本小题满分12分)设函数f(x)=x3+ax2+bx(x>0)的图象与直线y=4相切于M(1,4).(Ⅰ)求f(x)=x3+ax2+bx在区间(0,4]上的最大值与最小值;(Ⅱ)设存在两个不等正数s,t(s<t),当x∈[s,t]时,函数f(x)=x3+ax2+bx的值域是[ks,kt],求正数k的取值范围。
(本小题满分12分)已知动圆P过点并且与圆相外切,动圆圆心P的轨迹为W,过点N的直线与轨迹W交于A、B两点。(Ⅰ)求轨迹W的方程; (Ⅱ)若,求直线的方程;(Ⅲ)对于的任意一确定的位置,在直线上是否存在一点Q,使得,并说明理由。
(本小题满分12分)已知数列满足(t>0,n≥2),且,n≥2时,>0.其中是数列的前n项和.(Ⅰ)求数列的通项公式; (Ⅱ)若对于,不等式恒成立,求t 的取值范围.
(本小题满分12分)已知平行六面体的底面为正方形,分别为上、下底面的中心,且在底面的射影是。(Ⅰ)求证:平面平面;(Ⅱ)若点分别在棱上上,且,问点在何处时,;(Ⅲ)若,求二面角的大小(用反三角函数表示)。
(本小题满分12分)桌面上有三颗均匀的骰子(6个面上分别标有数字1,2,3,4,5,6)。重复下面的操作,直到桌面上没有骰子:将骰子全部抛掷,然后去掉那些朝上点数为奇数的骰子。记操作三次之内(含三次)去掉的骰子的颗数为X.(Ⅰ)求; (Ⅱ)求X的分布列及期望.