如图,已知二次函数的图象经过A(,),B(0,7)两点.⑴求该抛物线的解析式及对称轴;⑵当为何值时,?⑶在轴上方作平行于轴的直线,与抛物线交于C,D两点(点C在对称轴的左侧),过点C,D作轴的垂线,垂足分别为F,E.当矩形CDEF为正方形时,求C点的坐标.
解方程 (1) (2) (3)4-x=3(2-x) (4)
先化简,再求值:,其中。
如图,在平面直角坐标系中,点A、B的坐标分别为A(-4,0),B(0,3)。 (1)求AB的长; (2)过点B作BC⊥AB,交轴于点C,求点C的坐标; (3)在(2)的条件下,如果P、Q分别是AB和AC上的动点,连结PQ,设AP=CQ=m,问是否存在这样的使得△APQ与△ABC相似,若存在,请求出的值;若不存在,请说明理由。
某市场销售一批名牌衬衫,平均每天可销售20件,每件赢利40元.为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.若商场平均每天要赢利1200元,每件衬衫应降价多少元?
如图,在梯形ABCD中,AD∥BC,AB⊥AD,对角线BD⊥DC. (1)试说明:△ABD∽△DCB; (2)若BD=7,AD=5,求BC的长.