已知中心在原点,焦点在x轴上的椭圆离心率为,且经过点,过椭圆的左焦点作直线交椭圆于A、B两点,以OA、OB为邻边作平行四边形OAPB。 (1)求椭圆E的方程(2)现将椭圆E上的点的纵坐标保持不变,横坐标变为原来的一半,求所得曲线的焦点坐标和离心率(3)是否存在直线,使得四边形OAPB为矩形?若存在,求出直线的方程。若不存在,说明理由。
已知两个等比数列 { a n } , { b n } ,满足 a 1 = a ( a > 0 ) , b 1 - a 1 = 1 , b 2 - a 2 = 2 , b 3 - a 3 = 3 . (1)若 a = 1 ,求数列 { a n } 的通项公式; (2)若数列 { a n } 唯一,求 a 的值.
在 ∆ A B C 中,角 A , B , C 的对边分别是 a , b , c ,已知 sin C + cos C = 1 - sin C 2 . (1)求 sin C 的值; (2)若 a 2 + b 2 = 4 a + b - 8 ,求边 c .
某饮料公司招聘一名员工,现对其进行一项测试,以便确定工资级别.公司准备了两种不同的饮料共8杯,其颜色完全相同,并且其中4杯为 A 饮料,另外4杯为 B 饮料,公司要求此员工一一品尝后,从8杯饮料中选出4杯 A 饮料.若4杯都选对,则月工资定为3500元;若4杯选对3杯,则月工资定为2800元;否则月工资定为2100元.令 X 表示此人选对 A 饮料的杯数.假设次人对 A 和 B 两种饮料没有鉴别能力. (1)求 X 的分布列; (2)求此员工月工资的期望.
设整数 n ≥ 4 , P ( a , b ) 是平面直角坐标系xoy中的点,其中 a , b ∈ 1 , 2 , 3 . . . . . . n , a > b
(1)记 A n 为满足 a - b = 3 的点P的个数,求 A n ; (2)记 B n 为满足 1 3 a - b 是整数的点P的个数,求
如图,在正四棱柱 A B C D - A 1 B 1 C 1 D 1 中, A A 1 = 2 , A B = 1 ,点 N 是 B C 的中点,点 M 在 C C 1 上,设二面角 A 1 - D N - M 的大小为 θ . (1)当 θ = 90 ° 时,求 A M 的长; (2)当 cos θ = 6 6 时,求 C M 的长.