如图,抛物线经过点A、B两点,且当x=3和x=-3时,这条抛物线上对应点的纵坐标相等,经过点C的直线与x轴平行.(1)求这条抛物线的解析式;(2)若D是直线上的一个动点,求使△DAB的周长最小时点D的坐标;(3)以这条抛物线上的任意一点P为圆心,PO的长为半径作⊙P,试判断⊙P与直线的位置关系,并说明理由.
如图,AB∥CD,EF⊥AB于O ,∠2=135°,求∠1的度数. 下面提供三个思路:(1)过F作FH∥AB,(2)延长EF交CD于I;(3)延长GF交AB于K.请你利用三个思路中的两个思路,求∠1的度数.
如图,已知AB∥CD,分别探究下面四个图形中∠APC和∠PAB、∠PCD的关系,并从所得的四个关系中任选一个加以说明,证明所探究的结论的正确性. 结论(1)____________________________;(2)____________________________;(3)____________________________;(4)____________________________;选择结论________,说明理由是什么.
如图,直线AD与AB、CD相交于A、D两点,EC、BF与AB、CD相交于E、C、B、F,如果∠1=∠2,∠B=∠C.说明∠A=∠D
如图,已知DE∥BC,CD是∠ACB的平分线,∠B=70°,∠ACB=50°,求∠EDC和∠BDC的度数.
如图,已知∠B=∠C,AE∥BC,说明AE平分∠CAD.