已知:如图1,在平面直角坐标系中,O为坐标原点,直线y=kx+b与x轴、y轴分别交与点A、B,与双曲线y=相交于C、D两点,且点D的坐标为(1,6).(1)当点C的横坐标为2时,试求直线AB的解析式,并直接写出的值为 .(2)如图2,当点A落在x 轴的负半轴时,过点C作x轴的垂线,垂足为E,过点D作y轴的垂线,垂足为F,连接EF.①判断ΔEFC的面积和ΔEFD的面积是否相等,并说明理由;②当=2时,求tan∠OAB的值.
如图,在梯形ABCD中,AD∥BC,∠BCD=90°,BC=DC,点E在对角线BD上,作∠ECF=90°,连接DF,且满足CF=EC.(1)求证:BD⊥DF;(2)当时,试判断四边形DECF的形状,并说明理由.
已知:二次函数中的满足下表:
(1)求的值;(2)根据上表求时的的取值范围;(3)若,两点都在该函数图象上,且,试比较与的大小.
某学校体育场看台的侧面如图阴影部分所示,看台有四级高度相等的小台阶,每级小台阶都为0.4米.现要做一个不锈钢的扶手AB及两根与FG垂直且长均为l米的不锈钢架杆AD和BC(杆子的底端分别为D,C),且.(1)求点D与点C的高度差DH的长度;(2)求所用不锈钢材料的总长度(即AD+AB+BC).(结果精确到0.1米.参考数据:,,)
如图,⊙P与y轴相切,圆心为P(-2,1),直线MN过点M(2,3),N(4,1).(1)请你在图中作出⊙P关于y轴对称的⊙P′;(不要求写作法) (2)求⊙P在轴上截得的线段长度;(3)直接写出圆心P′到直线MN的距离.
已知四边形ABCD是菱形,在平面直角坐标系中的位置如图,边AD经过原点O,已知A(0,-3),B(4,0).(1)求点D的坐标;(2)求经过点C的反比例函数解析式.