在直角坐标系xOy 中,曲线C1的参数方程为(为参数)M是C1上的动点,P点满足,P点的轨迹为曲线C2(Ⅰ)求C2的方程(Ⅱ)在以O为极点,x 轴的正半轴为极轴的极坐标系中,射线与C1的异于极点的交点为A,与C2的异于极点的交点为B,求.
抛物线y=ax2+bx在第一象限内与直线x+y=4相切.此抛物线与x轴所围成的图形的面积记为S.求使S达到最大值的a、b值,并求Smax.
已知过函数f(x)=的图象上一点B(1,b)的切线的斜率为-3. (1)求a、b的值; (2)求A的取值范围,使不等式f(x)≤A-1987对于x∈[-1,4]恒成立; 令.是否存在一个实数t,使得当时,g(x)有最大值1?
讨论函数的单调性,并确定它在该区间上的最大值最小值.
设函数 (1)求导数; 并证明有两个不同的极值点; (2)若不等式成立,求的取值范围.
是否存在这样的k值,使函数在(1,2)上递减,在(2,-∞)上递增.