在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系.圆C1,直线C2的极坐标方程分别为ρ=4sinθ,ρcos=2.(1)求C1与C2交点的极坐标;(2)设P为C1的圆心,Q为C1与C2交点连线的中点.已知直线PQ的参数方程为 (t∈R为参数),求a,b的值.
(本小题满分13分) 已知函数(,)图象的相邻两对称轴间的距离为,若将函数的图象向左平移个单位后图象关于轴对称. (1)求使成立的的取值范围; (2)设,其中是的导函数,若,且,求的值.
(本小题满分12分)已知函数. (1)判断函数的奇偶性,并证明; (2)若对于任意,不等式恒成立,求正实数的取值范围.
(本小题满分12分) 设为数列的前项和,且对任意时,点都在函数的图象上。 (1)求数列的通项公式; (2)设,求数列的前项和的最大值。
(本小题满分12分) 在中,角的对边分别是,若。 (1)求角的大小; (2)若,的面积为,求的值。
(本小题满分12分) 某市有三所高校,其学生会学习部有“干事”人数分别为,现采用分层抽样的方法从这些“干事”中抽取名进行“大学生学习部活动现状”调查。 (1)求应从这三所高校中分别抽取的“干事”人数; (2)若从抽取的名干事中随机选两名干事,求选出的名干事来自同一所高校的概率。