已知双曲线W:的左、右焦点分别为、,点,右顶点是M,且,.(Ⅰ)求双曲线的方程;(Ⅱ)过点的直线l交双曲线W的右支于A、B两个不同的点(B在A、Q之间),若点在以线段AB为直径的圆的外部,试求△AQH与△BQH面积之比λ的取值范围.
(本小题满分14分) 命题:函数在上是增函数;命题:,使得. (1)若命题“且”为真,求实数的取值范围; (2)若命题“或”为真,“且”为假,求实数的取值范围.
已知梯形ABCD中,AD∥BC,∠ABC ="∠BAD" =,AB=BC=2AD=4,E、F分别是AB、CD上的点,且EF∥BC。设AE =,G是BC的中点.沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF (如图). (1)当=2时,求证:BD⊥EG ; (2)若以F、B、C、D为顶点的三棱锥的体积记为,求的最大值; (3)当取得最大值时,求二面角D-BF-E的余弦值.
如图,四棱锥的侧面垂直于底面,,,在棱上,是的中点,二面角为求的值;
如图,已知正方形ABCD的边长为1,FD⊥平面ABCD,EB⊥平面ABCD,FD=BE=1,M为BC边上的动点.试探究点M的位置,使F—AE—M为直二面角.
已知双曲线C的中心在原点,抛物线的焦点是双曲线C的一个焦点,且双曲线经过点,又知直线与双曲线C相交于A、B两点. (1)求双曲线C的方程; (2)若,求实数k值.