某车间为了规定工时额,需确定加工零件所花费的时间,为此做了4次试验,得到的数据如下图:若加工时间与零件个数之间有较好的线性相关关系。()
(1)求加工时间与零件个数的线性回归方程;(2)试预报加工10个零件需要的时间。(附:回归方程系数公式)
如图,在四棱锥 P - A B C D 中,底面 A B C D 是矩形,已知 A B = 3 , A D = 2 , P A = 2 , P D = 2 2 , ∠ P A B = 60 ° .
(1)证明: A D ⊥ 平面 P A B ; (2)求异面直线 P C 与 A D 所成的角的大小; (3)求二面角 P - B D - A 的大小.
如图,在四棱锥P—ABCD中,PA⊥底面ABCD,∠, AB∥CD,AD=CD=2AB=2,E,F分别是PC,CD的中点. (Ⅰ)证明:CD⊥平面BEF; (Ⅱ)设, 求k的值.
四棱锥P—ABCD中,PA⊥面ABCD,PA=AB=BC=2,E为PA中点,过E作平行于底面的面EFGH分别与另外三条侧棱交于F,G,H,已知底面ABCD为直角梯形,AD//BC,AB⊥AD,∠BCD=135° (1)求异面直线AF,BG所成的角的大小; (2)设面APB与面CPD所成的锐二面角的大小为θ,求cosθ.
如图,已知长方体直线与平面所成的角为,垂直于,为的中点. (1)求异面直线与所成的角; (2)求平面与平面所成的二面角; (3)求点到平面的距离.
如图,已知:在菱形ABCD中,∠DAB=60°,PA⊥底面ABCD,PA=AB=2,E,F分别是AB与PD的中点. (1)求证:PC⊥BD; (2)求证:AF//平面PEC; (3)求二面角P—EC—D的大小.