(1)已知x , y>0,且x+y>2,试证中至少有一个小于2。(2)已知|a|<1,|b|<1,求证:>1
在直角坐标平面中,△的两个顶点的坐标分别为,,平面内两点同时满足下列条件:①=0;②;③∥(1)求△的顶点的轨迹方程;(2)过点直线与(1)中轨迹交于不同的两点,求△面积的最大值.
已知数列的前项和为,且满足,.(1)问:数列是否为等差数列?并证明你的结论;(2)求和;(3)求证:.
已知点,分所成的比为2,是平面上一动点,且满足.(1)求点的轨迹对应的方程;(2) 已知点在曲线上,过点作曲线的两条弦,且直线的斜率满足,试推断:动直线有何变化规律,证明你的结论.
已知,若在区间上的最大值,最小值为,记.(1)求的解析表达式;(2)若对一切都有成立,求实数的取值范围.
已知两点且点P使成等差数列.(1)若P点的轨迹曲线为C,求曲线C的方程;(2)从定点出发向曲线C引两条切线,求两切线方程和切点连线的直线方程。