已知在数列{an}中,(t>0且t≠1).是函数的一个极值点.(1)证明数列是等比数列,并求数列的通项公式;(2)记,当t=2时,数列的前n项和为Sn,求使Sn>2012的n的最小值;(3)当t=2时,是否存在指数函数g(x),使得对于任意的正整数n有成立?若存在,求出满足条件的一个g(x);若不存在,请说明理由.
在极坐标系(ρ,θ)(0≤θ<2π)中,求曲线ρ=2sinθ与ρcosθ=1的交点Q的极坐标.
已知曲线C:ρsin(θ+)=,曲线P:ρ2-4ρcosθ+3=0,(1)求曲线C,P的直角坐标方程.(2)设曲线C和曲线P的交点为A,B,求|AB|.
求过点A(3,)且和极轴成角的直线.
已知☉O1和☉O2的极坐标方程分别是ρ=2cosθ和ρ=2asinθ(a是非零常数).(1)将两圆的极坐标方程化为直角坐标方程.(2)若两圆的圆心距为,求a的值.
求经过极点O(0,0),A(6,),B(6,)三点的圆的极坐标方程.