过轴上动点引抛物线的两条切线、,、为切点.(1)若切线,的斜率分别为和,求证: 为定值,并求出定值;(2)求证:直线恒过定点,并求出定点坐标; (3)当最小时,求的值.
选修4-5:不等式选讲已知不等式(1)若,求不等式的解集;(2)若已知不等式的解集不是空集,求a的取值范围。
选修4-4:坐标系与参数方程已知曲线(为参数).(1)将的方程化为普通方程;(2)若点是曲线上的动点,求的取值范围.
选修4-1:几何证明选讲如图,是⊙的直径,是⊙的切线,与的延长线交于点,为切点.若,,的平分线与和⊙分别交于点、,求的值.
设函数(),.(1) 将函数图象向右平移一个单位即可得到函数的图象,试写出的解析式及值域;(2) 关于的不等式的解集中的整数恰有3个,求实数的取值范围;(3)对于函数与定义域上的任意实数,若存在常数,使得和都成立,则称直线为函数与的“分界线”.设,,试探究与是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.
如图所示,某市政府决定在以政府大楼为中心,正北方向和正东方向的马路为边界的扇形地域内建造一个图书馆.为了充分利用这块土地,并考虑与周边环境协调,设计要求该图书馆底面矩形的四个顶点都要在边界上,图书馆的正面要朝市政府大楼.设扇形的半径,,与之间的夹角为.(1)将图书馆底面矩形的面积表示成的函数.(2)若,求当为何值时,矩形的面积有最大值?其最大值是多少?