在数列中,已知。(1)求数列的通项公式;(2)若(为非零常数),问是否存在整数,使得对任意的都有?若存在,求出的值;若不存在,请说明理由。
已知数列{an}满足条件: a1=1,a2=r(r>0),且{anan+1}是公比为q(q>0)的等比数列,设bn=a2n-1+a2n(n=1,2,…).(1)求出使不等式anan+1+an+1an+2>an+2an+3(n∈N*)成立的q的取值范围;(2)求bn和,其中Sn=b1+b2+…+bn;(3)设r=219.2-1,q=,求数列{}的最大项和最小项的值.
设数列{an}的首项a1=1,前n项和Sn满足关系式:3tSn-(2t+3)Sn-1=3t(t>0,n=2,3,4…).(1)求证: 数列{an}是等比数列;(2)设数列{an}的公比为f(t),作数列{bn},使b1=1,bn=f()(n=2,3,4…),求数列{bn}的通项bn;(3)求和: b1b2-b2b3+b3b4-…+b2n-1b2n-b2nb2n+1.
已知数列{bn}是等差数列,b1=1,b1+b2+…+b10=145.(1)求数列{bn}的通项bn;(2)设数列{an}的通项an=loga(1+)(其中a>0且a≠1),记Sn是数列{an}的前n项和,试比较Sn与logabn+1的大小,并证明你的结论.
设数列{an}的前n项和为Sn,且Sn=(m+1)-man 对任意正整数n都成立,其中m为常数,且m<-1.(1)求证:{an}是等比数列;(2)设数列{an}的公比q=f(m),数列{bn}满足:b1=a1,bn=f(bn-1)(n≥2,n∈N*). 试问当m为何值时,成立?
数列{an}中,a1=8,a4=2且满足an+2=2an+1-an,(n∈N*).(1)求数列{an}的通项公式;(2)设Sn=|a1|+|a2|+…+|an|,求Sn;(3)设bn=(n∈N*),Tn=b1+b2+……+bn(n∈N*),是否存在最大的整数m,使得对任意n∈N*均有Tn>成立?若存在,求出m的值;若不存在,说明理由.