某校从参加考试的学生中抽出60名学生,将其成绩(均为整数)分成六组[40,50),[50,60) ...[90,100]后画出如下部分频率分布直方图.观察图形的信息,回答下列问题:(Ⅰ)求成绩落在[70,80)上的频率,并补全这个频率分布直方图;(Ⅱ) 估计这次考试的及格率(60分及以上为及格)和平均分;(Ⅲ) 从成绩是70分以上(包括70分)的学生中选两人,求他们在同一分数段的概率.
已知动点到定点的距离与点到定直线:的距离之比为. (1)求动点的轨迹的方程; (2)设、是直线上的两个点,点与点关于原点对称,若,求的最小值.
已知直线:,直线:,其中,. (1)求直线的概率; (2)求直线与的交点位于第一象限的概率.
已知函数()的最小正周期为. (Ⅰ)求的值; (Ⅱ)求函数在区间上的取值范围.
新课标要求学生数学模块学分认定由模块成绩决定,模块成绩由模块考试成绩和平时成绩构成,各占50%,若模块成绩大于或等于60分,获得2学分,否则不能获得学分(为0分),设计一算法,通过考试成绩和平时成绩计算学分,并画出程序框图。
已知直线与椭圆相交于A、B两点,且线段AB的中点,在直线上.(1)求此椭圆的离心率;(2)若椭圆的右焦点关于直线的对称点的在圆上,求此椭圆的方程.