在学习“轴对称现象”内容时,老师让同学们寻找身边的轴对称图形,小明有一副三角尺和一个量角器(如图所示).(1)小明的这三件文具中,可以看做是轴对称图形的是____________(填字母代号);(2)小红也有同样的一副三角尺和一个量角器,若他们分别从自己这三件文具中随机取出一件,则可以拼成一个轴对称图案的概率是多少?(请画树状图或列表)计算)
某企业2010年盈利1500万元,2012年克服金融危机的不利影响,仍实现盈利2160万元。从2010年到2012年,如果该企业每年的盈利的年增长率相同 求:(1)、该企业2011年盈利多少万元? (2)、若该企业盈利的年增长率继续保持不变,预计2013年盈利多少万元?
为丰富学生的校园文化生活,珠海第十中学举办了“十中好声音”才艺比赛,三个年级都有男、女各一名选手进入决赛.初一年级选手编号为男1号、女1号,初二年级选手编号为男2号、女2号,初三年级选手编号为男3号、女3号.比赛规则是男、女各一名选手组成搭档展示才艺. (1)用列举法说明所有可能出现搭挡的结果; (2)求同一年级男、女选手组成搭档的概率; (3)求高年级男选手与低年级女选手组成搭档的概率.
目前世界上最高的电视塔是广州新电视塔.如图所示,新电视塔高AB为610米,远处有一栋大楼,某人在楼底C处测得塔顶B的仰角为45°,在楼顶D处测得塔顶B的仰角为39°. (1)求大楼与电视塔之间的距离AC; (2)求大楼的高度CD(精确到1米)。 (参考数据:sin39°≈0.6293,cos39°≈0.7771,tan39°≈0.8100)
如图,现有一圆心角为90°,半径为8cm的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计),求该圆锥的侧面积和圆锥的高.(结果保留π)
如图所示,抛物线y=x2+bx+c与x轴交于A,B两点,与y轴交于点C(0,2),连接AC,若tan∠OAC=2. (1)求抛物线对应的二次函数的解析式; (2)在抛物线的对称轴l上是否存在点P,使∠APC=90°?若存在,求出点P的坐标;若不存在,请说明理由; (3)如图所示,连接BC,M是线段BC上(不与B、C重合)的一个动点,过点M作直线l′∥l,交抛物线于点N,连接CN、BN,设点M的横坐标为t.当t为何值时,△BCN的面积最大?最大面积为多少?