极具特色的“八卦楼”(又称“威镇阁”)是漳州的标志性建筑,它建立在一座平台上.为了测量“八卦楼”的高度AB,小华在D处用高1.1米的测角仪CD,测得楼的顶端A的仰角为22o;再向前走63米到达F处,又测得楼的顶端A的仰角为39o(如图是他设计的平面示意图).已知平台的高度BH约为13米,请你求出“八卦楼”的高度约多少米?(参考数据:sin22o≈,tan220≈,sin39o≈,tan39o≈)
如图,在梯形 ABCD中, AD∥ BC,∠ ADC=90°,∠ B=30°, CE⊥ AB,垂足为点 E.若 AD=1, AB=4 3 ,求△ BCE外接圆的面积.
如图为甲、乙两个可以自由转动的均匀的转盘,甲转盘被分成3个面积相等的扇形,乙转盘被分成4个面积相等的扇形,每一个扇形都标有相应的数字,同时转动两个转盘,当转盘停止后,设甲转盘中指针所指区域内的数字为 m,乙转盘中指针所指区域内的数字为 n(若指针指在边界线上时,重转一次,直到指针指向一个区域为止)
(1)请你用画树状图或列表的方法求出 m和 n的乘积为偶数的概率;
(2)直接写出点( m, n)落在函数 y=﹣4 x图象上的概率.
如图,矩形 ABCD中,过对角线 BD中点 O的直线分别交 AB, CD边于点 E、 F.
(1)求证:四边形 BEDF是平行四边形;
(2)只需添加一个条件,即 ,可使四边形 BEDF为菱形.
一艘轮船在静水中的最大航速为30 km/ h,它以最大航速沿江顺流航行90 km所用时间,与以最大航速逆流航行60 km所用时间相等,江水的流速为多少?
如图,抛物线 y= ax 2+ bx﹣5与坐标轴交于 A(﹣1,0), B(5,0), C(0,﹣5)三点,顶点为 D.
(1)请直接写出抛物线的解析式及顶点 D的坐标;
(2)连接 BC与抛物线的对称轴交于点 E,点 P为线段 BC上的一个动点(点 P不与 B、 C两点重合),过点 P作 PF∥ DE交抛物线于点 F,设点 P的横坐标为 m.
①是否存在点 P,使四边形 PEDF为平行四边形?若存在,求出点 P的坐标;若不存在,说明理由.
②过点 F作 FH⊥ BC于点 H,求△ PFH周长的最大值.