在△中,已知 、,动点满足. (1)求动点的轨迹方程;(2)设,,过点作直线垂直于,且与直线交于点,试在轴上确定一点,使得;(3)在(II)的条件下,设点关于轴的对称点为,求的值.
已知R,函数e. (1)若函数没有零点,求实数的取值范围; (2)若函数存在极大值,并记为,求的表达式; (3)当时,求证:.
某服装厂生产一种服装,每件服装的成本为40元,出厂单价定为60元,该厂为鼓励销售商订购,决定当一次订购量超过100件时,每多订购一件,订购的全部服装的出场单价就降低0.02元,根据市场调查,销售商一次订购量不会超过600件. (1)设一次订购x件,服装的实际出厂单价为p元,写出函数的表达式; (2)当销售商一次订购多少件服装时,该厂获得的利润最大?其最大利润是多少?
已知向量,向量,函数·. (1)求的最小正周期T; (2)若方程在上有解,求实数的取值范围.
已知是中的对边,. (1)求; (2)求的值.
已知函数,. (Ⅰ)当时,求曲线在点处的切线方程; (Ⅱ)若在区间上是减函数,求的取值范围.