在△中,已知 、,动点满足. (1)求动点的轨迹方程;(2)设,,过点作直线垂直于,且与直线交于点,试在轴上确定一点,使得;(3)在(II)的条件下,设点关于轴的对称点为,求的值.
如图,从 A 1 (1,0,0), A 2 (2,0,0), B 1 (0,2,0), B 2 (0,2,0), C 1 (0,0,1), C 2 (0,0,2)这6个点中随机选取3个点,将这3个点及原点 O 两两相连构成一个"立体",记该"立体"的体积为随机变量 V (如果选取的3个点与原点在同一个平面内,此时"立体"的体积 V = 0 )。
(1)求 V = 0 的概率; (2)求 V 的分布列及数学期望。
在 △ A B C 中,角 A , B , C 的对边分别为 a , b , c .已知, A = π 4 , b sin ( π 4 + C ) - c sin ( π 4 + B ) = a . (1)求证: B - C = π 2 ;
(2)若 a = 2 ,求 △ A B C 的面积.
已知数列 { a n } 的前 n 项和 S n = - 1 2 n 2 + k n ( k ∈ N * ) ,且 S n 的最大值为8. (1)确定常数 k ,求 a n ; (2)求数列 { 9 - 2 a n 2 n } 的前 n 项和 T n .
已知函数 f x = e a x - x ,其中 a ≠ 0
(1)若对一切 x ∈ R , f x ⩾ 1 恒成立,求 a 的取值集合. (2)在函数 f x 的图像上取定两点 A x 1 , f x 1 , B x 2 , f x 2 x 1 < x 2 ,记直线 A B 的斜率为 K ,问:是否存在 x 0 ∈ x 1 , x 2 ,使 f ` x 0 > k 成立?若存在,求 x 0 的取值范围;若不存在,请说明理由.
在直角坐标系 x O y 中,曲线 C 1 的点均在 C 2 : x - 5 2 + y 2 = 9 外,且对 C 1 上任意一点 M , M 到直线 x = - 2 的距离等于该点与圆 C 2 上点的距离的最小值. (Ⅰ)求曲线 C 1 的方程; (Ⅱ)设 P x 0 , y 0 y 0 ≠ ± 3 为圆 C 2 外一点,过 P 作圆 C 2 的两条切线,分别与曲线 C 1 相交于点 A , B 和 C , D .
证明:当 P 在直线 x = - 4 上运动时,四点 A , B , C , D 的纵坐标之积为定值.