数列满足(1)证明数列为等差数列;(2)求的前n项和。
已知函数 ,.(Ⅰ)当 时,求函数 的最小值;(Ⅱ)当 时,讨论函数 的单调性;(Ⅲ)求证:当 时,对任意的 ,且,有.
如下图,互相垂直的两条公路、旁有一矩形花园,现欲将其扩建成一个更大的三角形花园,要求点在射线上,点在射线上,且直线过点,其中米,米. 记三角形花园的面积为.(Ⅰ)当为何值时,取得最小值,并求出最小值;(Ⅱ)若不超过1764平方米,求长的取值范围.
如图,为圆的直径,点、在圆上,且,矩形所在的平面和圆所在的平面互相垂直,且,.(Ⅰ)求证:平面;(Ⅱ)设的中点为,求证:平面;(Ⅲ)设平面将几何体分割成的两个锥体的体积分别为、,求的值
已知椭圆的中心在原点,焦点在轴上,且焦距为,实轴长为4(Ⅰ)求椭圆的方程; (Ⅱ)在椭圆上是否存在一点,使得为钝角?若存在,求出点的横坐标的取值范围;若不存在,请说明理由.
已知函数 .(Ⅰ)求的最小正周期;(Ⅱ)若,求的单调区间.