先后2次抛掷一枚骰子,将得到的点数分别记为a,b.(1)求直线ax+by+5=0与圆x2+y2=1相切的概率;(2)将a,b,5的值分别作为三条线段的长,求这三条线段能围成等腰三角形的概率.
在中,角分别对应边,已知成等比数列,且. (1)若,求的值; (2)求的值.
已知函数,. (1)求函数的极大值和极小值; (2)求函数图象经过点的切线的方程; (3)求函数的图象与直线所围成的封闭图形的面积.
已知定义域为R的函数是奇函数. (1)求的值; (2)若对任意的,不等式恒成立,求的取值范围.
设,,函数 (1)用五点作图法画出函数在一个周期上的图象; (2)求函数的单调递减区间和对称中心的坐标; (3)求不等式的解集; (4)如何由的图象变换得到的图象.
(本小题共13分)已知数列的前项和满足,,. (Ⅰ)如果,求数列的通项公式; (Ⅱ)如果,求证:数列为等比数列,并求; (Ⅲ)如果数列为递增数列,求的取值范围.