两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,在同一条直线上,连结请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母)证明:
如图,在△ABC中,∠B=90°,AB=5cm,BC=7cm.点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动. (1)如果P、Q分别从A、B同时出发,那么几秒后,△PBQ的面积等于4cm2? (2)如果P、Q分别从A、B同时出发,那么几秒后,PQ的长度等于5cm? (3)如果P、Q分别从A、B同时出发,△PBQ的面积能否等于8cm2?说明理由.由此思考:△PBQ的面积最多为多少cm2?
如图,△ABC的边BC在直线上,AC⊥BC,且AC=BC,△DEF的边FE也在直线上,边DF与边AC重合,且DF=EF. (1)在图(1)中,请你通过观察、思考,猜想并写出AB与AE所满足的数量关系和位置关系;(不要求证明) (2)将△DEF沿直线向左平移到图(2)的位置时,DE交AC于点G,连结AE,BG.猜想△BCG与△ACE能否通过旋转重合?请证明你的猜想.
如图,⊙O是△ABC的外接圆,AB是⊙O的直径,D为⊙O上的一点,OD⊥AC,垂足为E,连接BD. (1)求证:BD平分∠ABC; (2)当∠ODB=30°时,求证:BC=OD.
已知关于x的方程。 (1)当该方程的一个根为1时,求a的值; (2)求证:不论a取何实数,该方程都有两个不相等的实数根.
已知平面直角坐标系中三点的坐标分别为:A(4、4),B(-2,2),C(3,0) 画出它的以原点O为对称中心的△AˊBˊCˊ,写出 Aˊ,Bˊ,Cˊ三点的坐标。