某大学对该校参加某项活动的志愿者实施“社会教育实施”学分考核,该大学考核只有合格和优秀两个等次.若某志愿者考核为合格,授予个学分;考核为优秀,授予个学分.假设该校志愿者甲、乙考核为优秀的概率分别为、,乙考核合格且丙考核优秀的概率为.甲、乙、丙三人考核所得等次相互独立.(1)求在这次考核中,志愿者甲、乙、丙三人中至少有一名考核为优秀的概率;(2)记在这次考核中,甲、乙、丙三名志愿者所得学分之和为随机变量,求随机变量的分布列和数学期望.
已知函数f(x)=2sin(2x+φ)(0<φ<2π)的图象过点(,-2).(1)求φ的值;(2)若f()=,-<α<0,求sin(2α-)的值.
某商店为了吸引顾客,设计了一个摸球小游戏,顾客从装有1个红球,1个白球,3个黑球的袋中一次随机的摸2个球,设计奖励方式如下表:
(1)某顾客在一次摸球中获得奖励X元,求X的概率分布表与数学期望; (2)某顾客参与两次摸球,求他能中奖的概率.
如图,已知长方体ABCD-A1B1C1D1中,AB=3,BC=2,CC1=5,E是棱CC1上不同于端点的点,且.(1) 当∠BEA1为钝角时,求实数λ的取值范围;(2) 若λ=,记二面角B1-A1B-E的的大小为θ,求|cosθ|.
已知a,b是正数,且a+b=1,求证:(ax+by)(bx+ay)≥xy.
在平面直角坐标系xOy中,已知直线l的参数方程为 (t为参数 ),圆C的参数方程为 (θ为参数).若点P是圆C上的动点,求点P到直线l的距离的最小值.