扬州体育场下周将举办明星演唱会,小莉和哥哥两人都很想去观看,可门票只有一张,读九年级的哥哥想了一个办法,拿了八张扑克牌,将数字为1,2,3,5的四张牌给小莉,将数字为4,6,7,8的四张牌留给自己,并按如下游戏规则进行:小莉和哥哥从各自的四张牌中随机抽出一张,然后将抽出的两张扑克牌数字相加,如果和为偶数,则小莉去;如果和为奇数,则哥哥去.请用树状图或列表的方法求小莉去体育场看演唱会的概率;哥哥设计的游戏规则公平吗?若公平,请说明理由;若不公平,请你设计一种公平的游戏规则.
(7分) 已知a=3,b=—2,化简并求的值
(6分)解方程:
操作:在△ABC中,AC=BC=2,∠C=90°,将一块等腰直角三角板的直角顶点放在斜边AB的中点P处,将三角板绕点P旋转,三角板的两直角边分别交射线AC、CB于D、E两点,如图3-1-13①②③是旋转三角板得到的图形中的3种情况, 由①②③研究:(1)三角板绕点P旋转,观察线段PD和PE之间有什么数量关系?并结合图①加以证明。 (2)三角板绕点P旋转,△PBE是否能成为等腰三角形?若能,指出所有情况(即写出△PBE为等腰三角形时CE的长;若不能,请说明理由)。 (3)若将三角板的直角顶点放在斜边AB上的M处,且AM:MB=1:3,和前面一样操作,试问线段MD和ME之间有什么数量关系?并结合图④加以证明。
如图,已知抛物线y=x2+bx+c经过A(1,0),B(0,2)两点,顶点为D。 (1)求抛物线的解析式; (2)将△OAB绕点A顺时针旋转90°后,点B落到点C的位置,将抛物线沿y轴平移后经过点C,求平移后所得图象的函数关系式; (3)设(2)中平移后,所得抛物线与y轴的交点为B,顶点为D,若点N在平移后的抛物线上,且满足△NBB1的面积是△NDD1面积的2倍,求点N的坐标。
如图所示,电工李师傅借助梯子安装天花板上距地面2.90m的顶灯,已知梯子由两个相同的矩形面组成,每个矩形面的长都被六条踏板七等分,使用时梯脚的固定跨度为1m,矩形面与地面所成的角α为78°,李师傅的身高为1.78m,当他攀升到头顶距天花板0.05~0.20m时,安装起来比较方便。 (1)为了安全在梯子的第二段间接一根绳子,绳子最短应是多少?(两边打结处共用绳0.6m) (2)他现在竖直站立在梯子的第三级踏板上,请你通过计算判断他安装是否比较方便?(参考数据:sin78°≈0.98,cos78°≈0.21,tan78°≈4.70)