在复习《反比例函数》一课时,同桌的小明和小芳有一个问题观点不一致.小明认为如果两次分别从1~6六个整数中任取一个数,第一个数作为点的横坐标,第二个数作为点的纵坐标,则点在反比例函数的图象上的概率一定大于在反比例函数的图象上的概率,而小芳却认为两者的概率相同.你赞成谁的观点? 试用列表或画树状图的方法列举出所有点的情形; 分别求出点在两个反比例函数的图象上的概率,并说明谁的观点正确.
如图,在Rt△ABC中,∠C=90°,AC=3,AD为∠CAB的平分线,且AD=.(1)求证:AD=BD;(2)求AB的长.
如图,△ABC三个顶点坐标分别为A (1,2),B (3,1),C (2,3),以原点O为位似中心,将△ABC放大为原来的2倍得△A′B′C′. (1)在图中第一象限内画出符合要求的△A′B′C′;(不要求写画法) (2)△A′B′C′的面积是: .
已知到直线l的距离等于a的所有点的集合是与直线l平行且距离为a的两条直线l1、l2(如图①). (1)在图②的平面直角坐标系中,画出到直线y=x+2的距离为1的所有点的集合的图形.并写出该图形与y轴交点的坐标. (2)试探讨在以坐标原点O为圆心,r为半径的圆上,到直线y=x+2的距离为1的点的个数与r的关系. (3)如图③,若以坐标原点O为圆心,2为半径的圆上只有两个点到直线y=x+b的距离为1,则b的取值范围为 .
如图,△ABC内接于⊙O,AB 是直径,过点A作直线MN,且∠MAC=∠ABC.(1)求证:MN是⊙O的切线;(2)设D是弧AC的中点,连结BD交AC于点G,过点D作DE⊥AB于点E,交AC于点F.①求证:FD=FG.②若BC=2,AB=3,试求AE的长.
在北京2008年第29届奥运会前夕,某超市在销售中发现:奥运会吉祥物“福娃”平均每天可售出20套,每套盈利40元。为了迎接奥运会,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽快减少库存。经市场调查发现:如果每套降价1元,那么平均每天就可多售出2套.(1)要想平均每天在销售吉祥物上盈利1200元,那么每套应降价多少?(2)每套吉祥物降价多少元时,才能使每天的利润最大,最大利润为多少元?