设函数(I)若函数f(x)在x=1处与直线y=相切,①求实数a,b的值;②求函数f(x)在[土,e]上的最大值.(II)当b=0时,若不等式f(x)≥m+x对所有的都成立,求实数m的取值范围,
【原创】选修4 - 1:几何证明选讲如图,△ABC内接于⊙O,点D在OC的延长线上,AD与⊙O相切,割线DM与⊙O相交于点M,N,若∠B=30°,AC=1,求DMDN
等差数列的前项和为,已知,. (1)求; (2)若从中抽取一个公比为的等比数列,其中,且,. ①当取最小值时,求的通项公式; ②若关于的不等式有解,试求的值.
已知函数,. (1)若,则,满足什么条件时,曲线与在处总有相同的切线? (2)当时,求函数的单调减区间; (3)当时,若对任意的恒成立,求的取值的集合.
【原创】已知椭圆C :, 经过点P,离心率是. (1)求椭圆C的方程; (2)设直线与椭圆交于两点,且以为直径的圆过椭圆右顶点,求证:直线l恒过定点.
如图,两座建筑物AB,CD的底部都在同一个水平面上,且均与水平面垂直,它们的高度分别是9m和15m,从建筑物AB的顶部A看建筑物CD的张角. (1)求BC的长度; (2)在线段BC上取一点P(点P与点B,C不重合),从点P看这两座建筑物的张角分别为,,问点P在何处时,最小?