设函数(I)若函数f(x)在x=1处与直线y=相切,①求实数a,b的值;②求函数f(x)在[土,e]上的最大值.(II)当b=0时,若不等式f(x)≥m+x对所有的都成立,求实数m的取值范围,
如图,在中,为边上的高,,,沿将翻折,使得,得到几何体。 (1)求证:; (2)求与平面所成角的正切值。
如图,直四棱柱ABCD—A1B1C1D1的高为3,底面是边长为4且∠DAB=60°的菱形,AC∩BD=0,A1C1∩B1D1=O1,E是O1A的中点.(1)求证:平面O1AC平面O1BD(2)求二面角O1-BC-D的大小;(3)求点E到平面O1BC的距离.
计算并输出1×2×3×4×﹣﹣﹣×n>1000的最小整数n,写出程序框图,并编写程序。
某学校随机抽取部分新生调查其上学所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中,上学所需时间的范围是,样本数据分组为,,,,.(Ⅰ)求直方图中的值;(Ⅱ)如果上学所需时间不少于1小时的学生可申请在学校住宿,请估计学校600名新生中有多少名学生可以申请住宿;
已知,,其中 (1)求证: 与互相垂直;(2)若与的长度相等,求的值(为非零的常数) .