袋中有大小、形状相同的红、黑球各一个,先依次有放回地随机摸去三次,,每次摸取一个球.(1)试问:一共有多少中不同的结果?请列出所有可能的结果;(2)若摸到红球得2分,摸到黑球时得1分,求3次摸球所得总分为5分的概率;(3)求3次摸球中,至少2次摸到红球的概率.
(本小题10分)已知集合,,若,求实数a的取值范围.
(满分14分)已知定义在正实数集上的函数,,其中.设两曲线,有公共点,且在该点处的切线相同.(1)用表示;(2)试证明不等式:().
(满分12分)如图,在直线之间表示的是一条河流,河流的一侧河岸(x轴)是一条公路,且公路随时随处都有公交车来往. 家住A(0,a)的某学生在位于公路上B(d,0)(d>0)处的学校就读. 每天早晨该学生都要从家出发,可以先乘船渡河到达公路上某一点,再乘公交车去学校,或者直接乘船渡河到达公路上B(d, 0)处的学校.已知船速为,车速为(水流速度忽略不计).若d=2a,求该学生早晨上学时,从家出发到达学校所用的最短时间.
(满分12分)如图,正三棱柱ABC-A1B1C1的所有棱长都为2,D为CC1中点.(1)求证:AB1⊥平面A1BD;(2)求二面角A-A1D-B的余弦值;(3)求点C1到平面A1BD的距离.
(满分12分)函数,已知是奇函数.(1)求b,c的值;(2)求g(x)的单调区间与极值.