如图所示,已知:⊿ABC是等边三角形,点D,E分别在BC,AC上,且BD=CE,AD与BE相交于点F.(1)试说明⊿ABD≌⊿BCE.(2)⊿AEF与⊿BEA相似吗?说说你的理由.(3)等式成立吗?请说明理由.
已知 (1)求的值; (2)将如图等腰三角形纸片沿底边BC上的高AD剪成两个三角形,其中AB=AC=m,BC=n.用这两个三角形你能拼成多少种平行四边形?分别求出它们对角线的长(画出所拼成平行四边形的示意图)
“初中生骑电动 车上学”的现象越来越受到社会的关注,某校利用“五一”假期,随机抽查了本校若干名学生和部分家长对“初中生骑电动车上学”现象的看法,统计整理制作了的统计图,请回答下列问题: (1)这次抽查的家长总人数是多少? (2)请补全条形统计图和扇形统计图; (3)从这次接受调查的学生中,随机抽查一个学生,则抽到持哪一类态度学生的可能性大?
如图,在□ABCD中,点E在BC上,∠CDE=∠DAE. (1)求证:△ADE∽△DEC; (2)若AD=6,DE=4,求BE的长.
如图,“优选1号”水稻的实验田是边长为a m(a>1)的正方形去掉一个边长为1m的正方形蓄水池后余下的部分;“优选2号”水稻的实验田是边长为(a-1)m的正方形,两块试验田的水稻都收了600 kg. (1)优选号水稻的单位面积产量高; (2)“优选2号”水稻的单位面积产量是“优选1号”水稻的单位面积产量的多少倍?
如图,E、F分别是□ABCD的边BC、AD上的点,且BE=DF (1)求证:四边形AECF是平行四边形; (2)若BC=10,∠BAC=90°,且四边形AECF是菱形,求BE的长.