在海岸A处,发现北偏东方向,距离A为海里的B处有一走私船,在A北偏西方向距离A为2海里的C处有我方一艘缉私艇奉命以海里/小时的速度追截走私 船,且C在B的正西方,此时走私船正以海里/小时的速度从B处向北偏东方向逃窜, 问缉私艇沿什么方向,才能最快追上走私船?需要多长时间?
(本小题共12分)设函数f(x)=sinxcos(x+)+,x∈R. (1)设,求的值.. (2)△ABC的内角A、B、C所对边的长分别为a、b、c,若a、b、c成等比数列;且a+c=6,,求△ABC的面积.
(本小题满分13分)已知为常数,在处的切线方程为. (Ⅰ)求的单调区间; (Ⅱ)若任意实数,使得对任意的上恒有成立,求实数的取值范围; (Ⅲ)求证:对任意正整数,有.
(本小题满分13分)已知双曲线的中心在坐标原点,焦点在轴上,离心率虚轴长为2. (Ⅰ)求双曲线的标准方程; (Ⅱ)若直线与双曲线相交于,两点(均异于左、右顶点),且以为直径的圆过双曲线的左顶点,求证:直线过定点,并求出该定点的坐标.
(本小题满分13分)已知无穷数列的各项均为正整数,为数列的前项和. (Ⅰ)若数列是等差数列,且对任意正整数都有成立,求数列的通项公式; (Ⅱ)对任意正整数,从集合中不重复地任取若干个数,这些数之间经过加减运算后所得数的绝对值为互不相同的正整数,且这些正整数与一起恰好是1至全体正整数组成的集合. (ⅰ)求的值; (ⅱ)求数列的通项公式.
(本小题满分12分)节能减排是现代生活的追求。长沙地区某一天的温度(单位:)随时间(单位:小时)的变化近似满足函数关系:, 且早上8时的温度为,. (Ⅰ)求函数的解析式,并判断这一天的最高温度是多少?出现在何时? (Ⅱ)某通宵营业的超市,为节约能源和开支,在环境温度超过时,才开启中央空调降温,否则关闭中央空调,问中央空调应在何时开启?何时关闭?