设椭圆中心在坐标原点, A ( 2 , 0 ) , B ( 0 , 1 ) 是它的两个顶点,直线 y = k x ( k > 0 ) 与 A B 相交于点 D ,与椭圆相交于 E , F 两点. (Ⅰ)若 E D → = 6 D F → ,求 k 的值; (Ⅱ)求四边形 A E B F 面积的最大值.
二次函数满足。 (1)求函数的解析式; (2)在区间上,的图象恒在的图象上方,试确定实数的取值范围。
每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆): 按类用分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A类轿车10辆. (Ⅰ)求z的值. (Ⅱ)用分层抽样的方法在C类轿车中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;
当实数x为何值时,复数z=x2+x-2+(x2-3x-10)i是 (Ⅰ)虚数;(Ⅱ)纯虚数;(Ⅲ)正实数。
(本小题满分12分) 已知椭圆:. (Ⅰ)若椭圆的一个焦点到长轴的两个端点的距离分别为和,求椭圆的方程;
(本小题满分12分) 已知数列是首项为,公比的等比数列,设,数列满足. (Ⅰ)求的通项公式; (Ⅱ)若对一切正整数恒成立,求实数的取值范围.