已知数列的前n项和且=2.(1)求的值,并证明:当n>2时有;(2)求证:….
已知圆方程为:.(1)直线过点,且与圆交于、两点,若,求直线的方程;(2)过圆上一动点作平行于轴的直线,设与轴的交点为,若向量(为原点),求动点的轨迹方程,并说明此轨迹是什么曲线.
( 14分)如图,已知矩形ABCD中,AB=10,BC=6,将矩形沿对角线BD把△ABD折起,使A移到点,且在平面BCD上的射影O恰好在CD上.(Ⅰ)求证:;(Ⅱ)求证:平面平面;(Ⅲ)求三棱锥的体积.
( 12分)甲、乙、丙三人参加了一家公司的招聘面试,面试合格者可正式签约,甲表示只要面试合格就签约.乙、丙则约定:两人面试都合格就一同签约,否则两人都不签约.设甲面试合格的概率为,乙、丙面试合格的概率都是,且面试是否合格互不影响.求:(1)至少有1人面试合格的概率;(2)签约人数的分布列和数学期望.
设函数.(1)求函数的最小正周期.(2)当时,的最大值为2,求的值,
(本小题14分)线的斜率是-5。(Ⅰ)求实数b、c的值;(Ⅱ)求f(x)在区间[-1,2]上的最大值;(Ⅲ)对任意给定的正实数a,曲线y=f(x)上是否存在两点P、Q,使得△POQ是以O为直角顶点的直角三角形,且此三角形斜边中点在y轴上?请说明理由.