已知函数.(Ⅰ)当时,求证:函数在上单调递增;(Ⅱ)若函数有三个零点,求的值.
(本小题满分12分)已知数列满足,;数列满足,,且为等差数列.(Ⅰ)求数列和的通项公式;(Ⅱ)求数列的前项和.
(本小题满分12分)已知,,分别为三内角,,的对边,,, .(Ⅰ)求的值;(Ⅱ)求的面积.
(本小题满分14分)已知函数(a为常数),曲线y=f(x)在与y轴的交点A处的切线斜率为-1.(Ⅰ)求a的值及函数f(x)的单调区间;(Ⅱ)证明:当时,;(Ⅲ)证明:当时,.
(本小题满分14分)已知椭圆C:的焦距为4,其长轴长和短轴长之比为.(Ⅰ)求椭圆C的标准方程;(Ⅱ)设F为椭圆C的右焦点,T为直线上纵坐标不为0的任意一点,过F作TF的垂线交椭圆C于点P,Q.(ⅰ)若OT平分线段PQ(其中O为坐标原点),求的值;(ⅱ)在(ⅰ)的条件下,当最小时,求点T的坐标.
(本小题满分12分)对某交通要道以往的日车流量(单位:万辆)进行统计,得到如下记录:
将日车流量落入各组的频率视为概率,并假设每天的车流量相互独立.(Ⅰ)求在未来连续3天里,有连续2天的日车流量都不低于10万辆且另1天的日车流量低于5万辆的概率;(Ⅱ)用X表示在未来3天时间里日车流量不低于10万辆的天数,求X的分布列和数学期望.