(本小题满分12分)已知椭圆经过点,且两焦点与短轴的一个端点的连线构成等腰直角三角形.(1)求椭圆的方程;(2)动直线交椭圆C于A、B两点,试问:在坐标平面上是否存在一个定点T,使得以AB为直径的圆恒过点T。若存在,求出点T的坐标;若不存在,请说明理由.
如图(1),等腰直角三角形的底边,点在线段上,于,现将沿折起到的位置(如图(2)).(Ⅰ)求证:;(Ⅱ)若,直线与平面所成的角为,求长.
某舞蹈小组有2名男生和3名女生.现从中任选2人参加表演,记为选取女生的人数,求的分布列及数学期望.
已知各项均为正数的两个无穷数列、满足.(Ⅰ)当数列是常数列(各项都相等的数列),且时,求数列的通项公式;(Ⅱ)设、都是公差不为0的等差数列,求证:数列有无穷多个,而数列惟一确定;(Ⅲ)设,,求证:.
已知是实数,函数,和,分别是的导函数,若在区间上恒成立,则称和在区间上单调性一致.(Ⅰ)设,若函数和在区间上单调性一致,求实数的取值范围;(Ⅱ)设且,若函数和在以为端点的开区间上单调性一致,求的最大值.
如图,已知椭圆的上、下顶点分别为,点在椭圆上,且异于点,直线与直线分别交于点,(Ⅰ)设直线的斜率分别为,求证:为定值;(Ⅱ)求线段的长的最小值;(Ⅲ)当点运动时,以为直径的圆是否经过某定点?请证明你的结论.