阅读下面材料:根据两角和与差的正弦公式,有------①------②由①+② 得------③令 有代入③得 (Ⅰ)类比上述推证方法,根据两角和与差的余弦公式,证明:;(Ⅱ)若的三个内角满足,试判断的形状.(提示:如果需要,也可以直接利用阅读材料及(Ⅰ)中的结论)
(本小题满分13分)已知椭圆和抛物线有公共焦点F(1,0), 的中心和的顶点都在坐标原点,过点M(4,0)的直线与抛物线分别相交于A,B两点.(Ⅰ)写出抛物线的标准方程;(Ⅱ)若,求直线的方程;(Ⅲ)若坐标原点关于直线的对称点在抛物线上,直线与椭圆有公共点,求椭圆的长轴长的最小值.
(本小题满分13分)已知函数,其中a为常数,且.(Ⅰ)若,求函数的极值点;(Ⅱ)若函数在区间上单调递减,求实数a的取值范围.
(本小题满分13分)为保护水资源,宣传节约用水,某校4名志愿者准备去附近的甲、乙、丙三家公园进行宣传活动,每名志愿者都可以从三家公园中随机选择一家,且每人的选择相互独立.(Ⅰ)求4人恰好选择了同一家公园的概率;(Ⅱ)设选择甲公园的志愿者的人数为,试求的分布列及期望.
(本小题满分14分)已知四棱锥,底面为矩形,侧棱,其中,为侧棱上的两个三等分点,如图所示.(Ⅰ)求证:;(Ⅱ)求异面直线与所成角的余弦值;(Ⅲ)求二面角的余弦值.
(本小题满分13分)记等差数列的前n项和为,已知.(Ⅰ)求数列的通项公式;(Ⅱ)令,求数列的前n项和.