已知椭圆的离心率为,一个焦点为.(Ⅰ)求椭圆的方程;(Ⅱ)设直线交椭圆于,两点,若点,都在以点为圆心的圆上,求的值.
已知集合中的元素都是正整数,且,对任意的,且(I)求证:(II)求证:(III)对于n=9,试给出一个满足条件的集合A。
设A、B分别为椭圆的左、右顶点,椭圆的长轴长为4,且点在该椭圆上。(I)求椭圆的方程;(II)设P为直线x=4上不同于点(4,0)的任意一点,若直线AP与椭圆相交于A的点M,证明:为锐角三角形
已知函数(I)求函数在[1,3]上的最小值;(II)若存在(e为自然对数的底数,且)使不等式成立,求实数a的取值范围
如图,正方形ADEF与梯形ABCD所在的平面互相垂直,AB//CD,AB=AD=2,CD=4,M为CE的中点。(I)求证:BM//平面ADEF;(II)求证:平面平面BEC;(III)求平面BEC与平面ADEF所成锐二面角的余弦值。
已知数列满足且(I)求的通项公式;(II)设数列