设A、B分别为椭圆的左、右顶点,椭圆的长轴长为4,且点在该椭圆上。(I)求椭圆的方程;(II)设P为直线x=4上不同于点(4,0)的任意一点,若直线AP与椭圆相交于A的点M,证明:为锐角三角形
(14分)如图①,直角梯形中,,点分别在上,且,现将梯形A沿折起,使平面与平面垂直(如图②). (1)求证:平面; (2)当时,求二面角的大小.
(14分)如图,在直三棱柱中,,点是的中点. (Ⅰ)求证:; (Ⅱ)求证:平面; (Ⅲ)求异面直线与所成角的余弦值.
(13分)如图,四棱锥的底面是正方形,,点在棱上. (Ⅰ)求证:平面; (Ⅱ)当且为的中点时,求四面体体积.
(13分) 如图,直三棱柱中,,,. (Ⅰ)证明:; (Ⅱ)求二面角的正切值.
(13分)如图,在边长为2的菱形中,,是和的中点.(Ⅰ)求证:平面; (Ⅱ)若,求与平面所成角的正弦值.