(本小题满分7分)《选修4-4:坐标系与参数方程》在极坐标系中,圆的极坐标方程为.现以极点为原点,极轴为轴的非负半轴建立平面直角坐标系.(Ⅰ)求圆的直角坐标方程;(Ⅱ)若圆上的动点的直角坐标为,求的最大值,并写出取得最大值时点P的直角坐标.
已知为等比数列,是等差数列,(Ⅰ)求数列的通项公式及前项和;(Ⅱ)设,,其中,试比较与的大小,并加以证明.
如图,直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点(Ⅰ)证明:BC1//平面A1CD;(Ⅱ)设AA1=AC=CB=2,AB=,求三棱锥C一A1DE的体积.
一中食堂有一个面食窗口,假设学生买饭所需的时间互相独立,且都是整数分钟,对以往学生买饭所需的时间统计结果如下:
从第一个学生开始买饭时计时.(Ⅰ)估计第三个学生恰好等待4分钟开始买饭的概率;(Ⅱ)表示至第2分钟末已买完饭的人数,求的分布列及数学期望
已知角的顶点在原点,始边与轴的正半轴重合,终边经过点. (Ⅰ)求的值;(Ⅱ)若函数,求函数在区间上的取值范围.
已知函数 .(Ⅰ)若函数在区间其中上存在极值,求实数的取值范围;(Ⅱ)如果当时,不等式恒成立,求实数的取值范围.