已知函数.(Ⅰ)当时,求函数的单调区间;(Ⅱ)若函数的图像在点处的切线的倾斜角为,问:m在什么范围取值时,对于任意的,函数在区间上总存在极值?(Ⅲ)当时,设函数,若在区间上至少存在一个,使得成立,试求实数p的取值范围.
已知正方形ABCD的中心M(-1,0)和一边CD所在的直线方程为x+3y-5=0,求其他三边所在的直线方程.
已知函数的定义域为.(Ⅰ)若,求实数的值;(Ⅱ)若的最小值为5,求实数的值;(Ⅲ)是否存在实数,使得恒成立?若存在求出的值,若不存在请说明理由.
已知圆C过点A(1,3),B(2,2),并且直线m:平分圆C的面积.(Ⅰ)求圆C的方程;(Ⅱ)若过点D(0,1)且斜率为k的直线与圆C有两个不同的公共点M、N,若(O为原点),求k的值.
如图,三棱柱中,平面ABC,ABBC , 点M , N分别为A1C1与A1B的中点.(Ⅰ)求证:MN平面BCC1B1;(Ⅱ)求证:平面A1BC平面A1ABB1.
已知函数.(Ⅰ)求最小正周期;(Ⅱ)求在区间上的最大值和最小值.