如图所示,多面体FE-ABCD中,ABCD和ACFE都是直角梯形,DC∥AB,AE∥CF,平面ACFE⊥平面ABCD,AD=DC=CF=2AE=,∠ACF=∠ADC=。(I)求证:BC⊥平面ACFE;(II)求二面角B-FE-D的平面角的余弦值。
.定义域为R的函数f(x)=a-2bcosx(b>0)的最大值为,最小值为,求a,b 的值.
.已知tan(α-β)=1/2,tanβ=-1/7,求tan(2α-β)的值.
.已知,求的值
已知>0且≠1. (1)求的解析式; (2)判断的奇偶性与单调性; (3)对于,当恒成立,求实数m的取值范围.
已知:函数对一切实数都有成立,且. (1)求的值; (2)求的解析式。 (3)已知,设P:当时,不等式恒成立;Q:当时,是单调函数。如果满足使P成立的的集合记为,满足使Q成立的的集合记为,求∩(为全集)。