如图是一个水平放置的正三棱柱,是棱的中点.正三棱柱的主视图如图.(Ⅰ) 图中垂直于平面的平面有哪几个?(直接写出符合要求的平面即可,不必说明或证明)(Ⅱ)求正三棱柱的体积;(Ⅲ)证明:.
甲、乙两位同学报名参加2010年在广州举办的亚运会志愿者服务,两人条件相当,但名额只有一人. 两人商量采用抛骰子比大小的方法决定谁去,每人将一颗质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次, 两次点数和较大的当选志愿者. 甲先抛掷两次,第1次向上点数为3,第2次向上点数为4. (1)记乙第一次出现的点数为,第二次出现的点数为,用表示先后抛掷两次的结果,试写出两次向上点数和与甲相同的所有可能结果.(2)求乙抛掷两次后,向上点数和与甲相同的概率?(3)求乙抛掷两次后,能决定乙当选志愿者的概率?
已知向量,为非零向量,且.(1)求证:;(2)若,求与的夹角.
已知函数=.(1)求的定义域、值域; (2)讨论的周期性,奇偶性和单调性.
(本小题满分12分)在数列中,且对任意均有:(I)证明数列是等比数列;(II)求数列的通项公式;(Ⅲ)求证:
(本小题满分12分)已知定点,动点满足: . (I)求动点的轨迹的方程;(II)过点的直线与轨迹交于两点,试问在轴上是否存在定点,使得 为常数.若存在,求出点的坐标;若不存在,说明理由.