(本小题满分14分) 已知数列 (1)计算x2,x3,x4的值; (2)试比较xn与2的大小关系; (3)设,Sn为数列{an}前n项和,求证:当.
设集合A为函数y=ln(-x2-2x+8)的定义域,集合B为函数y=x+的值域.求A∩B
设曲线在点处的切线斜率为,且.对一切实数,不等式恒成立(≠0). (1) 求的值; (2) 求函数的表达式; (3) 求证:>.
已知函数(e为自然对数的底数). (1)求函数的单调增区间; (2)设关于x的不等式≥的解集为M,且集合,求实数t的取值范围.
已知是内任意一点,连结并延长交对边于,,,则.这是平面几何的一个命题,其证明常常采用“面积法”: . 运用类比,猜想对于空间中的四面体,存在什么类似的结论,并用“体积法”证明.
在人寿保险业中,要重视某一年龄的投保人的死亡率,经过随机抽样统计,得到某市一个投保人能活到75岁的概率为0.60,试问: (1)若有3个投保人, 求能活到75岁的投保人数的分布列; (2)3个投保人中至少有1人能活到75岁的概率.(结果精确到0.01)