已知数列{an}满足Sn+an=2n+1, (1) 写出a1, a2, a3,并推测an的表达式;(2) 用数学归纳法证明所得的结论。
已知数列中,,且, (1)试归纳出这个数列的通项公式;(不用证明) (2)设数列,求数列的前n项和.
已知函数 ,若函数在处有极值-6,求的单调递减区间;
在直角坐标系中,点P到两点,的距离之和等于4,设点P的轨迹为,直线与C交于A,B两点. (Ⅰ)写出C的方程; (Ⅱ)若,求k的值; (Ⅲ)若点A在第一象限,证明:当k>0时,恒有||>||
. (14分) 某分公司经销某种品牌产品,每件产品的成本为元,并且每件产品需向总公司交元()的管理费,预计当每件产品的售价为元()时,一年的销售量为万件. (1)求分公司一年的利润(万元)与每件产品的售价的函数关系式; (2)当每件产品的售价为多少元时,分公司一年的利润最大,并求出的最大值.
在四棱锥中,底面为菱形,,, , ,为的中点,为的中点 (Ⅰ)证明:直线; (Ⅱ)求异面直线AB与MD所成角的大小; (Ⅲ)求点B到平面OCD的距离。