设直线. 若直线l与曲线S同时满足下列两个条件:①直线l与曲线S相切且至少有两个切点;②对任意x∈R都有. 则称直线l为曲线S的“上夹线”.(Ⅰ)已知函数.求证:为曲线的“上夹线”. (Ⅱ)观察下图:根据上图,试推测曲线的“上夹线”的方程,并给出证明.
已知实数,函数. (I)讨论在上的奇偶性; (II)求函数的单调区间; (III)求函数在闭区间上的最大值。
在平面直角坐标系中,已知向量又点 (I)若求向量的坐标; (II) 若向量与向量共线,当取最大值时,求.
某服装厂某年1月份、2月份、3月份分别生产某名牌衣服1万件、万件、万件,为了估测当年每个月的产量,以这三个月的产品数量为依据,用一个函数模型模拟该产品的月产量与月份的关系,模拟函数可选用函数(其中为常数)或二次函数。又已知当年4月份该产品的产量为万件,请问用以上哪个函数作为模拟函数较好,并说明理由。
已知函数(,图像上一个最低点. (I)求的解析式; (II)设求的值.
已知,,函数; (I)求的最小正周期; (II)求在区间上的最大值和最小值。