在平面直角坐标系中,△ABC的两个顶点A,B的坐标分别为A(-1,0),B(1,0),平面内两点G,M同时满足下列条件①++=0;②||=||=||;③∥.(Ⅰ)求△ABC的顶点C的轨迹方程;(Ⅱ)是否存在过点P(3,0)的直线l与(Ⅰ)中轨迹交于E、F两点,且OE⊥OF?若存在,求出直线l斜率k的值;若不存在,说明理由.
在直角梯形PBCD中,,A为PD的中点,如下左图。将沿AB折到的位置,使,点E在SD上,且,如下右图。(1)求证:平面ABCD; (2)求二面角E—AC—D的正切值;(3)在线段BC上是否存在点F,使SF//平面EAC?若存在,确定F的位置, 若不存在,请说明理由。
已知A、B、C是三角形ABC的三内角,且,并且(1)求角A的大小。(2)的递增区间。
某工厂2010年第一季度生产的A、B、C、D四种型号的产品产量用条形图表示如图,现用分层抽样的方法从中选取50件样品参加四月份的一个展销会:(1)问A、B、C、D型号的产品各抽取多少件?(2)从50件样品随机的抽取2件,求这2件产品恰好是不同型号产品的概率; (3)从A、C型号的产品中随机的抽取3件,用表示抽取A种型号的产品件数,求的分布列和数学期望。
(22、23、24三题中任选一题作答,如果多做,则按所做的的第一题记分)(本小题满分10分)选修4—5:不等式选讲设函数(1)求不等式的解集;(2)若不等式(,,)恒成立,求实数的范围.
(22、23、24三题中任选一题作答,如果多做,则按所做的的第一题记分)(本小题满分10分)选修4—4:坐标系与参数方程已知直线的参数方程为(为参数),曲线C的极坐标方程是,以极点为原点,极轴为轴正方向建立直角坐标系,点,直线与曲线C交于A、B两点.(1)写出直线的极坐标方程与曲线C的普通方程;(2) 线段MA,MB长度分别记为|MA|,|MB|,求的值.