已知函数.(Ⅰ)若函数的图象在点处的切线与直线垂直,求函数的单调区间;(Ⅱ)求函数在区间上的最大值.
(本小题满分10分)已知向量,定义(I)求函数的单调递减区间;(II)若函数为偶函数,求的值。
(本小题满分10分) 在某学校组织的一次蓝球定点投蓝训练中,规定每人最多投3次;在A处每投进一球得3分,在B处每投进一球得2分;如果前两次得分之和超过3分即停止投篮,否则投三次。某同学在A处的命中率为0.25,在B处的命中率为.该同学选择先在A处投一球,以后都在B处投,用表示该同学投篮训练结束后所得的总分,其分布列为
求的值; 求随机变量的数学期量; 试比较该同学选择都在B处投篮得分超过3分与选择上述方式投篮得分超过3分的概率的大小。
(本小题满分10分) 如图,在底面边长为1,侧棱长为2的正四棱柱中,P是侧棱上的一点,. (1)试确定m,使直线AP与平面BDD1B1所成角为60º;(2)在线段上是否存在一个定点,使得对任意的m,⊥AP,并证明你的结论.
(本小题满分10分)过点且倾斜角为的直线和曲线(为参数)相交于两点.求线段的长.
本小题满分10分)已知矩阵,其中,若点在矩阵的变换下得到点(1)求实数a的值;(2)求矩阵的特征值及其对应的特征向量.