如图,已知△AOB,∠AOB=,∠BAO=,AB=4,D为线段AB的中点.若△AOC是△AOB绕直线AO旋转而成的.记二面角B-AO-C的大小为.(Ⅰ)当平面COD⊥平面AOB时,求的值;(Ⅱ)当∈[,]时,求二面角C-OD-B的余弦值的取值范围.
求函数 的最大值。
已知两曲线参数方程分别为(0≤θ<π)和( t ∈R),求它们的交点坐标.
求矩阵A=的特征值所对应的一个特征向量。
已知点A(1,0)在矩阵M=对应变换下变为点B(1,2),求M-1.
甲有一个箱子,里面放有x个红球,y个白球(x,y≥0,且x+y=4);乙有一个箱子,里面放有2个红球,1个白球,1个黄球.现在甲从箱子里任取2个球,乙从箱子里任取1个球.若取出的3个球颜色全不相同,则甲获胜. (1)试问甲如何安排箱子里两种颜色球的个数,才能使自己获胜的概率最大? (2)在(1)的条件下,求取出的3个球中红球个数的期望.