2012年5月20日是第23个中国学生营养日,某校社会实践小组在这天开展活动,调查快餐营养情况.他们从食品安全监督部门获取了一份快餐的信息(如图).根据信息,解答下列问题.(1)求这份快餐中所含脂肪质量;(2)若碳水化合物占快餐总质量的40%,求这份快餐所含蛋白质的质量;(3)若这份快餐中蛋白质和碳水化合物所占百分比的和不高于85%,求其中所含碳水化合物质量的最大值.
如图,直线AB、CD相交于O,射线OE把∠BOD分成两个角.若已知∠BOE=∠AOC,∠EOD=36°,求∠AOC的度数.
如图,AB与CD交于点O,OM为射线. (1)写出∠BOD的对顶角. (2)写出∠BOD与∠COM的邻补角. (3)已知∠AOC=70°,∠BOM=80°,求∠DOM和∠AOM的度数.
我们知道,两条直线相交,有且只有一个交点,三条直线相交,最多只有三个交点,那么,四条直线相交,最多有多少个交点?一般地,n条直线最多有多少个交点?说明理由.
如图所示,OD是∠BOC的平分线,OE是∠AOC的平分线,找出图中互补的角、互余的角.
(1)如图,AB、CD相交于O点,∠AOC=(2x﹣10)°,∠DOB=(x+25)°,求∠AOD的度数. (2)解方程:.